Low-Power, Low-Glitch, Octal 10-Bit VoltageOutput DACs with Serial Interface

General Description

The MAX5308/MAX5309 are 10-bit, eight channel, lowpower, voltage-output, digital-to-analog converters (DACs) in a space-saving 16-pin TSSOP package. The wide +2.7 V to +5.5 V supply voltage range and less than $215 \mu \mathrm{~A}$ (max) supply current per DAC are excellent for low-power and low-voltage applications. The low $2 n \mathrm{~V}$-s glitch energy of the MAX5308/MAX5309 makes them ideal for digital control of fast-response, closed-loop systems.
The MAX5308 has a digital output (DOUT) that can be used for daisy-chaining multiple devices. The MAX5309 has a hardware reset input (CLR) which clears all registers and DACs to zero. The MAX5308/MAX5309 have a software shutdown feature that reduces the supply current to $1 \mu \mathrm{~A}$. The MAX5308/MAX5309 feature a load DAC ($\overline{\mathrm{LDAC}}$) function that updates the output of all eight DACs simultaneously.
The 3-wire SPI ${ }^{\text {TM }}$, QSPI ${ }^{\text {TM }}$, MICROWIRE ${ }^{\text {TM }}$ and DSPcompatible serial interface allows the input and DAC registers to be updated independently or simultaneously with a single software command. These devices use a double-buffered design to minimize the digital-noise feedthrough from the digital inputs to the outputs.
The MAX5308/MAX5309 operating temperature range is from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Applications
Gain and Offset Adjustment
Power Amplifier Control
Process Control I/O Boards
Portable Instrumentation Equipment
Control of Optical Components

- Eight Highly Integrated 10-Bit DACs in 16-Pin TSSOP ($6.4 \mathrm{~mm} \times 5 \mathrm{~mm}$) Package
- Ultra-Low Glitch Energy <2nV-s
- Low Total Supply Current:
$1.7 \mathrm{~mA}(\mathrm{max})$ with $\mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}$
- +2.7V to +5.5V Wide Single-Supply Range
- Fast $5 \mu \mathrm{~s}$ Settling Time
- Software-Selectable Shutdown Mode < 1 $\mu \mathrm{A}$
- 15MHz 3-Wire SPI, QSPI, and MICROWIRECompatible Serial Interface
- Power-Up Reset to Zero Scale

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX5308EUE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TSSOP
MAX5309EUE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TSSOP

Pin Configuration

SPI and QSPI are trademarks of Motorola, Inc.
MICROWIRE is a trademark of National Semiconductor, Corp.

Low-Power, Low-Glitch, Octal 10-Bit VoltageOutput DACs with Serial Interface

ABSOLUTE MAXIMUM RATINGS

Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature .. $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, G N D=0, V_{R E F}=V_{D D}, C_{L}=200 p F, R_{L}=2 k \Omega, T_{A}=T_{M I N}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
STATIC ACCURACY (Notes 1, 2)						
Resolution	N		10			Bits
Integral Nonlinearity	INL			± 0.5	± 2	LSB
Differential Nonlinearity	DNL	Guaranteed monotonic			± 0.5	LSB
Offset Error (Note 3)	Voe			± 10	± 60	mV
Offset Error Temperature Coefficient				± 10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Gain Error (Note 3)	VGE			± 0.1	± 1	$\begin{gathered} \hline \% \text { of } \\ \text { FS } \end{gathered}$
Gain Error Temperature Coefficient				± 5		ppm/ ${ }^{\circ} \mathrm{C}$

REFERENCE INPUT

Reference Input Voltage Range (Note 4)	VREF		0.8		VDD	V
Reference Input Impedance	RREFIN		135	200	265	$\mathrm{k} \Omega$
Reference Current	IREFPD	In power-down mode		1	10	$\mu \mathrm{A}$

DAC OUTPUTS

Output Voltage Range		With no-load	0.020	$\begin{aligned} & \text { VDD - } \\ & 0.020 \end{aligned}$	V
DC Output Impedance			0.5		Ω
Capacitive Load	CL		500		pF
Resistive Load	RL		2		k Ω
Short-Circuit Current		$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$	33		mA
		$V_{\text {DD }}=+2.7 \mathrm{~V}$	20		
Wake-Up Time		From shutdown mode	24		$\mu \mathrm{s}$

Low-Power, Low-Glitch, Octal 10-Bit VoltageOutput DACs with Serial Interface

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, G N D=0, \mathrm{~V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DIGITAL INPUTS (SCLK, DIN, $\overline{\mathbf{C S}}, \overline{\text { LDAC }}$, $\overline{\text { CLR }}-\mathrm{MAX5309)}$						
Input High Voltage	V_{IH}	$V_{D D}=+5 \mathrm{~V} \pm 10 \%$	2.4			V
		$V_{\text {DD }}=+3 \mathrm{~V} \pm 10 \%$	2.1			
Input Low Voltage	VIL	$V_{\text {DD }}=+5 \mathrm{~V} \pm 10 \%$			0.8	V
		$V_{\text {DD }}=+3 \mathrm{~V} \pm 10 \%$			0.6	
Input Leakage Current	IIN	All digital inputs 0 or VDD		± 0.1	± 10	$\mu \mathrm{A}$
Input Capacitance	CIN			10		pF
DIGITAL OUTPUT (MAX5308)						
Output Low Voltage	VOL	$\mathrm{ISINK}=1 \mathrm{~mA}$			0.5	V
Output High Voltage	VOH	ISOURCE $=1 \mathrm{~mA}$	$\begin{gathered} \text { VDD - } \\ 0.5 \end{gathered}$			V
DYNAMIC PERFORMANCE						
Voltage-Output Slew Rate	SR	Positive and negative		1		$\mathrm{V} / \mathrm{\mu s}$
Voltage-Output Settling Time	ts	FFHhex to 2FFhex		5		$\mu \mathrm{s}$
Digital Feedthrough		Code 0, all digital inputs from 0 to VDD		0.5		nV-s
DAC Glitch Impulse		Major carry glitch		2		nV-s
DAC Output Noise				600		$\mu \mathrm{V}$ p-p
DAC to DAC crosstalk				0.5		nV-s
POWER REQUIREMENTS						
Supply Voltage Range	$V_{D D}$		2.7		5.5	V
Supply Current with No-Load (Note 5)	IDD	All digital inputs at 0 or $V_{D D}$, $V_{D D}=V_{R E F}=+5.5 \mathrm{~V}$		1.5	1.7	mA
		All digital inputs at 0 or $V_{D D}$, $\mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+1.2 \mathrm{~V}$		1.1	1.3	
		All digital inputs at 0 or $V_{D D}$, $V_{D D}=V_{\text {REF }}=+3 \mathrm{~V}$		1.3		
		Shutdown mode		1	10	$\mu \mathrm{A}$

Low-Power, Low-Glitch, Octal 10-Bit VoltageOutput DACs with Serial Interface

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, G N D=0, V_{R E F}=V_{D D}, C L=200 \mathrm{pF}, R_{L}=2 \mathrm{k} \Omega, T_{A}=T_{M I N}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
TIMING CHARACTERISTICS						
Serial Clock Frequency	fsclk		0		15	MHz
SCLK Pulse Width High	tch		33			ns
SCLK Pulse Width Low	tcL		33			ns
$\overline{\text { CS }}$ Fall to SCLK Fall Setup Time	tcss		16			ns
SCLK Fall to $\overline{\mathrm{CS}}$ Rise Setup Time	tcSH		20			ns
LDAC Pulse Width Low	tLDACPWL		20			ns
$\overline{\text { CLR }}$ Pulse Width Low	tCLRPWL	MAX5309 only	20			ns
DIN to SCLK Fall Setup Time	tDS		16			ns
DIN to SCLK Fall Hold Time	tDH		10			ns
$\overline{\text { CS }}$ Pulse Width High	tCSPWH		20			ns
SCLK Rise to DOUT Fall	tsDL	Load capacitance $=20 \mathrm{pF}$			50	ns
SCLK Rise to DOUT Rise	tsDH	Load capacitance $=20 \mathrm{pF}$			50	ns

Note 1: Static accuracy tested without load.
Note 2: Linearity is tested within codes 1Dhex to 3E3hex.
Note 3: Gain and offset tested within codes 1Dhex to 3E3hex.
Note 4: Static accuracy specifications valid for $V_{\text {REF }}=1.2 \mathrm{~V}$ to $V_{D D}$.
Note 5: Current scales linearly between these two extremes of $\mathrm{V}_{\text {REF }}$

Low-Power, Low-Glitch, Octal 10-Bit VoltageOutput DACs with Serial Interface

Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Low-Power, Low-Glitch, Octal 10-Bit VoltageOutput DACs with Serial Interface

Typical Operating Characteristics (continued)

$1 \mu \mathrm{~s} / \mathrm{div}$

POSITIVE FULL-SCALE SETTLING TIME

Low-Power, Low-Glitch, Octal 10-Bit VoltageOutput DACs with Serial Interface

Pin Description

PIN	NAME	FUNCTION
1	SCLK	Serial Clock Input. Serial data is loaded on the falling edge of SCLK.
2	DIN	Serial Data Input
3	$\overline{\text { LDAC }}$	Load DAC. $\overline{\text { LDAC }}$ is an asynchronous active-low input that updates the DAC outputs simultaneously. If $\overline{\text { LDAC }}$ is driven low, the DAC registers are transparent.
4	REF	Reference Voltage Input
$5-12$	OUT_	Analog Output Signal
13	GND	Ground
14	VDD	Power Supply. Bypass VDD to GND with a 0.1 μ F capacitor.
15	DOUT	Data Output (MAX5308). DOUT is updated on the falling edge of SCLK.
	$\overline{\text { CLR }}$	Asynchronous Clear DAC (MAX5309). Active-low input to clear all DACs and registers. Resets all outputs to zero.
	$\overline{\mathrm{CS}}$	Chip-Select Input (active-low)

Detailed Description

The MAX5308/MAX5309 are 10-bit, eight-channel, lowpower, voltage-output digital-to-analog converters (DACs) that are easily addressed using a simple 3-wire serial interface. These devices feature eight doublebuffered DACs using a common 16-bit serial to parallel shift register, a power-on reset (POR) circuit and eight output buffer amplifiers.
Figure 1 shows the block diagram of MAX5308/ MAX5309. The shift register converts a serial 16-bit word to parallel data for each input register operating with a clock rate of up to 15 MHz . The 3 -wire digital interface to the shift register consists of chip-select $(\overline{\mathrm{CS}})$, serial clock (SCLK), and data input (DIN). Serial data at DIN is loaded on the falling edge of SCLK.
The eight double-buffered DACs consist of input and DAC registers. The input registers are directly connected to the shift register and hold the result of the most recent write operation. The eight 10-bit DAC registers hold the current output code for the respective DAC. Data can be transferred from the input registers to the DAC registers by either the hardware interface (LDAC) or by software command. The output of DACs are buffered through eight Rail-to-Rail ${ }^{\circledR}$ op amps.
The MAX5308 has a digital output (DOUT) which can be used to daisy chain multiple devices on a single serial bus. The MAX5309 contains a hardware shutdown ($\overline{\mathrm{CLR})}$ to clear all internal registers and power-down all DACs.

The MAX5308/MAX5309 require an external reference such as the MAX6161 family. The reference voltage range is from 0.8 V to V_{DD}.
POR circuitry gives the DACs a defined state during start-up. At power-on, the DAC outputs reset to zero through a $100 \mathrm{k} \Omega$ resistor, providing additional safety for applications that drive valves or other transducers that need to be off at power-up.
The MAX5308/MAX5309 feature low digital feedthrough and minimize glitch energy on MSB transitions. The 3wire SPI, QSPI, MICROWIRE and DSP-compatible serial interface saves additional circuit board space

Serial Interface Configuration

The MAX5308/MAX5309 3-wire serial interface are compatible with MICROWIRE, SPI, QSPI, and DSPs (Figure 2 and Figure 3). The chip-select input ($\overline{\mathrm{CS}}$) frames the serial data loading at DIN. Following $\overline{C S}$'s high-to-low transition, the data is shifted synchronously and latched into the input register on each falling edge of the serial clock input (SCLK). Each serial word is 16 bits, the first four bits are the control word followed by 10 data bits (MSB first) as shown in Table 1. The last two data bits must be zeros. The 10-bit DAC code is unipolar binary with $1 \mathrm{LSB}=\mathrm{V}_{\mathrm{REF}} / 1024$.

The serial input register transfers its contents to the input registers after loading 16 bits of data and driving $\overline{\mathrm{CS}}$ high. $\overline{\mathrm{CS}}$ must be brought high for a minimum of

Low-Power, Low-Glitch, Octal 10-Bit VoltageOutput DACs with Serial Interface

Table 1. Serial Interface Configuration

16-BIT SERIAL WORD																DESC.	FUNCTION
CONTROL BITS				DATA BITS													
MSB				LSB													
C3	C2	C1	C0	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00				
0	0	0	0	X	X	X	X	X	X	X	X	X	X	0	0	NOP	No Operation
0	0	0	1	X	X	X	X	X	X	X	X	X	X	0	0	RESET	RESET All Internal Registers. Power-down DACs, outputs pulled down with $100 \mathrm{k} \Omega$. Equivalent to software $\overline{\mathrm{CLR}}$.
0	0	1	0											0	0	$\begin{gathered} \text { DAC } \\ 1 \end{gathered}$	D9-D0 to Input Register 1, DAC Output Unchanged
0	0	1	1											0	0	$\begin{gathered} \text { DAC } \\ 2 \end{gathered}$	D9-D0 to Input Register 2, DAC Output Unchanged
0	1	0	0											0	0	$\begin{gathered} \text { DAC } \\ 3 \end{gathered}$	D9-D0 to Input Register 3, DAC Output Unchanged
0	1	0	1											0	0	$\begin{gathered} \text { DAC } \\ 4 \end{gathered}$	D9-D0 to Input Register 4, DAC Output Unchanged
0	1	1	0											0	0	$\begin{gathered} \text { DAC } \\ 5 \end{gathered}$	D9-D0 to Input Register 5, DAC Output Unchanged
0	1	1	1											0	0	$\begin{gathered} \text { DAC } \\ 6 \end{gathered}$	D9-D0 to Input Register 6, DAC Output Unchanged
1	0	0	0											0	0	$\begin{gathered} \text { DAC } \\ 7 \end{gathered}$	D9-D0 to Input Register 7, DAC Output Unchanged
1	0	0	1											0	0	$\begin{gathered} \text { DAC } \\ 8 \end{gathered}$	D9-D0 to Input Register 8, DAC Output Unchanged
1	0	1	0											0	0	$\begin{gathered} \text { DAC } \\ 1-4 \end{gathered}$	D9-D0 to Input Registers 1-4 and DAC Registers 1-4, DAC Outputs Updated (Write-Thru).
1	0	1	1											0	0	$\begin{gathered} \text { DAC } \\ 5-8 \end{gathered}$	D9-D0 to Input Registers and DAC Registers, DAC Outputs Updated (Write-Thru).
1	1	0	0											0	0	$\begin{gathered} \text { DAC } \\ 1-8 \end{gathered}$	D9-D0 to Input Registers and DAC Registers, DAC Outputs Updated (Write-Thru).
1	1	0	1											0	0	$\begin{gathered} \text { DAC } \\ 1-8 \end{gathered}$	D9-D0 to Input Registers, DAC Outputs Unchanged
1	1	1	0	$\begin{array}{\|c} \hline \text { DAC } \\ 8 \end{array}$	$\begin{array}{\|c} \hline \text { DAC } \\ 7 \end{array}$	$\begin{array}{\|c} \hline \text { DAC } \\ 6 \end{array}$	$\begin{array}{\|c} \hline \text { DAC } \\ 5 \end{array}$	$\begin{gathered} \mathrm{DAC} \\ 4 \end{gathered}$	$\begin{gathered} \mathrm{DAC} \\ 3 \end{gathered}$	$\left\|\begin{array}{c} \text { DAC } \\ 2 \end{array}\right\|$	$\begin{gathered} \text { DAC } \\ 1 \end{gathered}$	X	X	0	0	$\begin{gathered} \text { DAC } \\ 1-8 \end{gathered}$	Input Registers to DAC Registers Indicated by Ones, DAC Outputs Updated, Equivalent to Software LDAC. (No effect on DACs indicated by Os.)

$X=$ Don't Care

Low-Power, Low-Glitch, Octal 10-Bit VoltageOutput DACs with Serial Interface

Figure 1. Functional Diagram

20ns before the next write sequence since a write sequence is initiated on a falling edge of $\overline{\mathrm{CS}}$. If $\overline{\mathrm{CS}}$ goes high prior to completing 16 cycles of SCLK, the input data is discarded. To initiate a new data transfer, drive $\overline{\mathrm{CS}}$ low again. The serial clock (SCLK) can be either high or low between $\overline{\mathrm{CS}}$ write pulses. Figure 4 shows the timing diagram for the complete 3-wire serial interface transmission.

The MAX5308/MAX5309 digital inputs are doublebuffered. Depending on the command issued through the serial interface, the input register(s) can be loaded without affecting the DAC register(s), the DAC register(s) can be loaded directly, or all eight registers can be updated simultaneously from the input registers.

Low-Power, Low-Glitch, Octal 10-Bit VoltageOutput DACs with Serial Interface

Table 2. Serial Interface Power-Up and Shutdown Commands

	NTR	L		DATA BITS													
C3	C2	C1	C0	$\begin{gathered} \hline \text { DAC } \\ 8 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { DAC } \\ \hline 7 \\ \hline \end{array}$	$\begin{gathered} \hline \text { DAC } \\ 6 \end{gathered}$	$\begin{gathered} \text { DAC } \\ 5 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { DAC } \\ 4 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { DAC } \\ 3 \end{array}$	$\begin{array}{\|c\|} \hline \text { DAC } \\ 2 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { DAC } \\ 1 \\ \hline \end{array}$	D03	D02	D01	D00	DESC.	FUNCTION
1	1	1	1									1	1	X	X	PowerUp	Power-Up individual DAC buffers indicated by data in DAC1 through DAC8. A one indicates the DAC output is connected and active. A zero does not affect the DACs present state.
1	1	1	1									0	1	X	X	Shutdown 1	Shutdown individual DAC buffers indicated by data in DAC1 through DAC8. A one indicates the DAC output is high-impedance. A zero does not affect the DACs present state.
1	1	1	1									1	0	x	X	Shutdown 2	Shutdown individual DAC buffers indicated by data in DAC1 through DAC8. A one indicates the DAC is shutdown and the output is connected to GND through a $1 \mathrm{k} \Omega$ resistor. A zero does not affect the DACs present state.
1	1	1	1									0	0	X	X	Shutdown 3	Shutdown individual DAC buffers indicated by data in DAC1 through DAC8. A one indicates the DAC is shutdown and the output is connected to GND through a $100 \mathrm{k} \Omega$ resistor. A zero does not affect the DACs present state.

X $=$ Don't Care

Shutdown Modes

The MAX5308/MAX5309 include three software-controlled shutdown modes that reduce the supply current to less than $1 \mu \mathrm{~A}$. In two of the three shutdown modes (shutdown 2 and 3) the outputs are independently connected to ground through a $1 \mathrm{k} \Omega$ or $100 \mathrm{k} \Omega$ (default) resistor. The third shutdown (shutdown 1) command leaves the DACs outputs high impedance. Table 2 lists the three shutdown modes of operation as well as the power-up command.

Serial-Data Output (DOUT)

The DOUT (MAX5308) follows DIN with a 16 clock cycle delay. The DOUT is capable of driving 20 pF load with a 50 ns (max) delay from the falling edge of SCLK.
DOUT is primarily used for daisy-chaining multiple devices. Optionally, DOUT can be used to monitor the serial interface for valid communications by connecting DOUT to a microprocessor input.

Hardware Clear (CLR)
The MAX5309 has an active-low CLR input. Drive CLR low to clear all internal registers, shutdown all DACs,

Low-Power, Low-Glitch, Octal 10-Bit VoltageOutput DACs with Serial Interface

Figure 2. Connections for MICROWIRE
and terminate all DAC outputs to GND through $100 \mathrm{k} \Omega$ resistors. $\overline{C L R}$ is asynchronous and can be applied at any time. If $\overline{C L R}$ is toggled low during loading of a serial word, that word will terminate and must be reloaded.

Reference Input

The external reference input has a typical input impedance of $200 \mathrm{k} \Omega$. The input voltage range is from 800 mV to VDD. VDD can be used as the reference for the MAX5308/MAX5309. The DAC outputs are then ratiometric to VDD.

Output Buffer

The rail-to-rail buffer amplifier is stable with any combination of resistive loads greater than $2 \mathrm{k} \Omega$ and capacitive loads less than 500 pF . With a capacitive load of 200 pF the output buffers have a slew rate of $1 \mathrm{~V} / \mu \mathrm{s}$. For a $1 / 4$ FS to $3 / 4$ FS output transition, the amplifier output typically settles to $1 / 2$ LSB in less than 10μ s when loaded with $2 \mathrm{k} \Omega$ in parallel with 200 pF .

Power-On Reset
The MAX5308/MAX5309 have a POR circuit to set the DACs' output to zero when $V_{D D}$ is first applied. This ensures that unwanted DAC output voltages will not occur immediately following a system startup, such as after a loss of power. Upon initial power-up the POR circuit ensures that all DAC registers are cleared, the DACs are powered-down, and their outputs are terminated to GND through a $100 \mathrm{k} \Omega$ resistor.

Figure 3. Connections for SPI/QSPI

Applications Information

Daisy-Chaining Devices

Any number of MAX5308s can be daisy-chained by connecting the DOUT pin of one device to the DIN pin of the following device in the chain (Figure 5). To write to the chain, drive $\overline{\mathrm{CS}}$ low until all $\mathrm{n} \times 16$ clock cycles (where n is the number of devices in the chain) and associated data have been applied to the first device. When $\overline{\mathrm{CS}}$ is driven high, each device in the chain acts on the 16 bits in its input register. To adjust a single device in the chain, a No-Operation (NOP) command must be loaded for all other devices.

Figure 6 shows an alternate method of connecting several MAX5308s or MAX5309s. In this configuration, the data bus is common to all devices; data is not shifted through a daisy chain. More I/O lines are required in this configuration because a dedicated chip-select input $(\overline{\mathrm{CS}})$ is required for each IC.

Unipolar Output

The MAX5308/MAX5309 are normally configured for unipolar output. Table 3 lists the unipolar output voltages vs. digital codes.

Bipolar Output

The MAX5308/MAX5309 outputs can be configured for bipolar operation using Figure 7's circuit.
VoUT = VREF [(2D / 1024) -1]

Low-Power, Low-Glitch, Octal 10-Bit VoltageOutput DACs with Serial Interface

Figure 4. Timing Diagram
where D is the decimal value of the DACs' binary input code. Table 4 shows digital codes (offset binary) and corresponding output voltages for the Figure 7 circuit.

Power-Supply Considerations
On power-up, all input and DAC registers are cleared and DOUT is low.

Bypass VDD to GND with a $4.7 \mu \mathrm{~F}$ capacitor in parallel with a $0.1 \mu \mathrm{~F}$ capacitor. Use short lead lengths and place the bypass capacitors as close to the supply pins as possible.

Low-Power, Low-Glitch, Octal 10-Bit VoltageOutput DACs with Serial Interface

Table 3. Unipolar Code Table

DAC CONTENTS			
MSB	LSB	ANALOG OUTPUT	
1111	1111	11	$+V_{\text {REF }}\left(\frac{1023}{1024}\right)$
1000	0000	01	$+V_{\text {REF }}\left(\frac{513}{1024}\right)$
1000	0000	00	$+V_{\text {REF }}\left(\frac{512}{1024}\right)=\frac{+V_{\text {REF }}}{2}$
0111	1111	11	$+V_{\text {REF }}\left(\frac{511}{1024}\right)$
0000	0000	01	REF $\left(\frac{1}{1024}\right)$
0000	0000	00	$0 V$

Table 4. Bipolar Code Table

DAC CONTENTS		LSB	ANALOG OUTPUT
MSB	LSB	1111	11
1000	0000	01	$+\operatorname{VREF}\left(\frac{511}{512}\right)$
1000	0000	00	$0 \mathrm{VEF}\left(\frac{1}{512}\right)$
0111	1111	11	$-V_{\text {REF }}\left(\frac{1}{512}\right)$
0000	0000	01	$-V_{\text {REF }}\left(\frac{511}{512}\right)$
0000	0000	00	$-V_{\text {REF }}\left(\frac{512}{512}\right)=-V_{\text {REF }}$

Figure 5. Daisy-Chaining MAX5308s

Figure 6. Multiple MAX5308s or MAX5309s Sharing a Common DIN Line

Low-Power, Low-Glitch, Octal 10-Bit VoltageOutput DACs with Serial Interface

Chip Information
TRANSISTOR COUNT: 19,000
PROCESS TECHNOLOGY: BiCMOS

Figure 7. Bipolar Output Circuit

Low-Power, Low-Glitch, Octal 10-Bit VoltageOutput DACs with Serial Interface

